h1_key

當前位置:首頁 >新聞資訊 > 品牌資訊>英飛凌>米勒電容和米勒效應的器件系統(tǒng)設計
米勒電容和米勒效應的器件系統(tǒng)設計
2023-03-02 1020次

  密勒效應(Miller effect)是在電子學中,反相放大電路中,輸入與輸出之間的分布電容或寄生電容由于放大器的放大作用,其等效到輸入端的電容值會擴大1+K倍,其中K是該級放大電路電壓放大倍數(shù)。

  雖然一般密勒效應指的是電容的放大,但是任何輸入與其它高放大節(jié)之間的阻抗也能夠通過密勒效應改變放大器的輸入阻抗。

  我們先來看IGBT開通時的典型波形:


米勒電容和米勒效應的器件系統(tǒng)設計


  上圖中,綠色的波形是GE電壓,藍色的波形是CE電壓,紅色的波形是集電極電流IC。在開通過程中,GE的電壓從-10V開始上升,上升至閾值電壓后,IGBT導通,開始流過電流,同時CE電壓下降。CE電壓下降過程中,門極電壓不再上升,而是維持在一定的電壓平臺上,稱為米勒平臺。在這期間,CE電壓完全降至0V。隨后GE電壓繼續(xù)上升至15V,至此整個開通過程完成。

  IGBT門極電壓在開關過程中展現(xiàn)出來的平臺稱為米勒平臺。導致米勒平臺的“罪魁禍首”是IGBT 集電極-門極之間寄生電容Cgc。由于半導體設計結構, IGBT內部存在各類寄生電容,如下圖所示,可分為柵極-發(fā)射極電容、柵極-集電極電容和集電極-發(fā)射極電容。其中門極與集電極(or漏極)之間的電容就是米勒電容,又叫轉移電容,即下圖中的C2、C5。


米勒電容和米勒效應的器件系統(tǒng)設計


 IGBT的寄生電容

  在IGBT橋式應用中,如果關斷沒有負壓,或者開關速度過快,米勒電容可能會導致寄生導通。如下圖,兩個IGBT組成一個半橋,上下管交替開通關斷,兩個管子不允許同時導通,否則不僅會增加系統(tǒng)損耗,還可能導致失效。當下管IGBT開通時,負載電流從下管流過,CE間電壓從母線電壓降至飽和電壓Vcesat。而此時,上管IGBT必須關斷,CE間電壓從飽和電壓跳變到母線電壓。上管電壓的從低到高跳變,產生很大的電壓變化率dv/dt。dv/dt作用在上管米勒電容上,產生位移電流。位移電流經(jīng)過門極電阻回到地,引起門極電壓抬升。如果門極電壓高于閾值電壓Vth,則上管的IGBT會再次導通,并流過電流,增加系統(tǒng)損耗。


米勒電容和米勒效應的器件系統(tǒng)設計


  怎么判斷是否發(fā)生了寄生導通呢?

  一個實驗幫助理解和觀察寄生導通。在雙脈沖測試平臺中,讓上管在0V和-5V的關斷電壓條件下,分別作兩次測試,觀察下管的開通波形。當Vgs=-5V時,下管開通電流的包裹面積,明顯小于當Vge=0V時的電流包裹面積,充分說明,當Vge=0V時,有額外的電流參與了開通過程。這個電流,就是來自于上管的寄生導通。


米勒電容和米勒效應的器件系統(tǒng)設計


  如何避免寄生導通?

  從器件角度看,有幾個重要的參數(shù):

  低米勒電容 - 米勒電容越小,相同的dv/dt下,位移電流越小。這一點,英飛凌IGBT7和CoolSiC? MOSFET尤其出色。以FP25R12W1T7為例,它的米勒電容Crss僅有0.017nF,相比同電流IGBT4的0.05nF,減少了近2/3。

  高閾值電壓 - 閾值電壓如果太低,米勒效應感應出的寄生電壓就很容易超過閾值,從而引起寄生導通。這一條對于IGBT不是問題,絕大部分IGBT的閾值在5~6V之間,有一定的抗寄生導通能力。但SiC MOSFET不一樣,因為SiC MOSFET溝道遷移率比較低,大部分SiC MOSFET會把閾值做得比較低(2~4V),這樣雖然可以提高門極有效過驅動電壓Vgs-Vth,進而降低SiC MOSFET的通態(tài)電阻,但是米勒效應引起的門極電壓抬升就很容易超過閾值電壓,這一現(xiàn)象在高溫時尤其明顯,因為閾值電壓隨溫度上升而下降。英飛凌CoolSiC? MOSFET因為采用了溝槽型結構,垂直晶面的溝道遷移率較高,所以可以把閾值做得高一點,而不影響其通態(tài)壓降。CoolSiC? MOSFET閾值電壓典型值 為4.5V,再加上極低的米勒電容,從而具有非常強的抗寄生導通能力。


  從驅動的角度看:

  使用負壓關斷。如果米勒電容引起的門極電壓抬升是7V,疊加在-5V的關斷電壓條件下,門極實際電壓為2V,小于閾值電壓,不會發(fā)生寄生導通。而如果0V關斷的話,可想而知門極實際電壓就是7V,寄生導通將無法避免。一般電流越大,需要的負壓越深。

  使用帶米勒鉗位的驅動芯片。米勒鉗位的原理是,在IGBT處于關斷狀態(tài)(Vg-VEE低于2V)時,直接用一個低阻通路(MOSFET)將IGBT的門極連接到地,當位移電流出現(xiàn)時,將直接通過MOSFET流到地,不流過門極電阻,自然也就不會抬升門極電壓,從而避免了寄生導通。


米勒電容和米勒效應的器件系統(tǒng)設計

  帶米勒鉗位的驅動芯片內部框圖



米勒電容和米勒效應的器件系統(tǒng)設計


  典型應用電路

  開通與關斷電阻分開。寄生導通發(fā)生時,位移電流流過關斷電阻,從而抬升了門極電壓。如果減小關斷的門極電阻,則可以降低門極感應電壓,從而減少寄生導通的風險。

  功率器件中的米勒效應來自于IGBT或MOSFET 結構中的門極—集電極/漏極之間寄生電容Cgc 或Cgd。米勒電容可能會引起寄生導通,從而導致系統(tǒng)損耗上升。抑制米勒寄生導通,要注意選擇具有較低米勒電容,或者是較高閾值電壓的器件,驅動設計上可以選擇負壓驅動、米勒鉗位、開通及關斷電阻分開等多種方式。

  • 英飛凌的EiceDRIVER?高低邊柵極驅動器IR2181STRPBF
  • 其中,英飛凌的EiceDRIVER? 600 V 高低邊柵極驅動器 IC(IR2181STRPBF),具有典型的 1.9 A 拉電流和 2.3 A 灌電流,具有更高的帶載能力,可驅動 MOSFET和IGBT,為產品從開發(fā)設計到最終應用全面保駕護航。
    2023-12-27 572次
  • 英飛凌門極驅動正壓對功率半導體性能影響
  • 對于半導體功率器件來說,門極電壓的取值對器件特性影響很大。以前曾經(jīng)聊過門極負壓對器件開關特性的影響,而今天我們來一起看看門極正電壓對器件的影響。文章將會從導通損耗,開關損耗和短路性能來分別討論。
    2023-12-22 534次
  • Neutron Controls與英飛凌合作汽車電池管理平臺
  • 英飛凌科技的解決方案可幫助工程師開發(fā)可靠的汽車電池管理系統(tǒng)(BMS)。英飛凌首選設計公司Neutron Controls現(xiàn)已發(fā)布ECU8?系統(tǒng)平臺,能夠加速基于英飛凌芯片組的電池管理系統(tǒng)(BMS)開發(fā)。通過該平臺,Neutron Controls及其設計服務客戶可以為電池管理單元提供完整的半導體硬件和軟件平臺解決方案,并符合ASIL-D, ISO26262標準,從而顯著減少開發(fā)工作量。
    2023-10-30 852次
  • 英飛凌完成收購氮化鎵系統(tǒng)公司GaN Systems
  • 德國慕尼黑和加拿大渥太華訊——英飛凌科技于2023年10月24日宣布完成收購氮化鎵系統(tǒng)公司(GaN Systems,以下同)。這家總部位于加拿大渥太華的公司,為英飛凌帶來了豐富的氮化鎵 (GaN) 功率轉換解決方案產品組合和領先的應用技術。
    2023-10-30 861次
  • 英飛凌采用150V OptiMOS功率MOSFET 電機驅動評估板
  • EVAL-6ED2742S01QM1評估套件包括一塊三相逆變功率板,內含額定電壓為160V 的6ED2742S01Q(5x5 VQFN-32)三相柵極驅動器,驅動六個額定電壓為150V的 OptiMOS? MOSFET BSC074N15NS5 (5x6 Super SO8)。
    2023-10-25 873次

    萬聯(lián)芯微信公眾號

    元器件現(xiàn)貨+BOM配單+PCBA制造平臺
    關注公眾號,優(yōu)惠活動早知道!
    10s
    溫馨提示:
    訂單商品問題請移至我的售后服務提交售后申請,其他需投訴問題可移至我的投訴提交,我們將在第一時間給您答復
    返回頂部