h1_key

當前位置:首頁 >新聞資訊 > 品牌資訊>亞德諾>基于熱敏電阻的溫度測量系統(tǒng)的設(shè)計挑戰(zhàn)和電路配置
基于熱敏電阻的溫度測量系統(tǒng)的設(shè)計挑戰(zhàn)和電路配置
2022-10-29 479次


 

基于熱敏電阻的溫度測量系統(tǒng)的歷史和設(shè)計挑戰(zhàn),以及它與基于電阻溫度檢測器(RTD)的溫度測量系統(tǒng)的比較。此外,本文還會簡要介紹熱敏電阻選擇、配置權(quán)衡,以及Σ-Δ型模數(shù)轉(zhuǎn)換器(ADC)在該應(yīng)用領(lǐng)域中的重要作用。

 

  熱敏電阻與RTD

  正如文章 "如何選擇并設(shè)計理想RTD溫度檢測系統(tǒng)" 中所討論的,RTD是一種電阻值隨溫度變化的電阻器。熱敏電阻的工作方式與RTD類似。RTD僅有正溫度系數(shù),熱敏電阻則不同,既可以有正溫度系數(shù),也可以有負溫度系數(shù)。負溫度系數(shù)(NTC)熱敏電阻的阻值會隨著溫度升高而減小,而正溫度系數(shù)(PTC)熱敏電阻的阻值會隨著溫度升高而增大。圖1顯示了典型NTCPTC熱敏電阻的響應(yīng)特性,以及它們與RTD曲線的比較。

  

1.png 

1. 熱敏電阻與 RTD 的響應(yīng)特性比較

 

  在溫度范圍方面,RTD曲線接近線性,而熱敏電阻具有非線性(指數(shù))特性,因此前者覆蓋的溫度范圍(通常為–200°C+850°C)比后者要寬得多。RTD通常提供眾所周知的標準化曲線,而熱敏電阻曲線則因制造商而異。我們將在本文的"熱敏電阻選擇指南"部分詳細討論這一點。

  熱敏電阻由復(fù)合材料——通常是陶瓷、聚合物或半導(dǎo)體(通常是金屬氧化物)——制成,與由純金屬(鉑、鎳或銅)制成的RTD相比,前者要小得多且更便宜,但不如后者堅固。熱敏電阻能夠比RTD更快地檢測溫度變化,從而提供更快的反饋。因此,熱敏電阻傳感器常用于要求低成本、小尺寸、更快響應(yīng)速度、更高靈敏度且溫度范圍受限的應(yīng)用,例如監(jiān)控電子設(shè)備、家庭和樓宇控制、科學(xué)實驗室,或商業(yè)或工業(yè)應(yīng)用中的熱電偶所使用的冷端補償。

  在大多數(shù)情況下,精密溫度測量應(yīng)用使用NTC熱敏電阻,而非PTC熱敏電阻。有一些PTC熱敏電阻被用于過流輸入保護電路,或用作安全應(yīng)用的可復(fù)位保險絲。PTC熱敏電阻的電阻-溫度曲線在達到其切換點(或居里點)之前有一個非常小的NTC區(qū)域;超過切換點之后,在幾攝氏度的范圍內(nèi),其電阻會急劇增加幾個數(shù)量級。因此,在過流情況下,PTC熱敏電阻在超過切換溫度后會產(chǎn)生大量自發(fā)熱,其電阻會急劇增加,導(dǎo)致輸入系統(tǒng)的電流減少,從而防止系統(tǒng)發(fā)生損壞。PTC熱敏電阻的切換點通常在60°C120°C之間,因此它不適合用在寬溫度范圍應(yīng)用中監(jiān)控溫度測量結(jié)果。

  本文重點介紹能夠測量或監(jiān)控–80°C+150°C溫度范圍的NTC熱敏電阻。NTC熱敏電阻在25°C時的標稱電阻從幾歐姆到10 MΩ不等。如圖1所示,與RTD相比,熱敏電阻每攝氏度的電阻變化更為顯著。熱敏電阻的高靈敏度和高電阻值使得其前端電路比RTD要簡單得多,因為熱敏電阻不需要任何特殊的接線配置(例如3線或4)來補償引線電阻。熱敏電阻設(shè)計僅使用簡單的2線配置。

  

1顯示了RTD、NTCPTC熱敏電阻的優(yōu)缺點

2.png 

1. 熱敏電阻與RTD

 

  基于熱敏電阻的溫度測量挑戰(zhàn)

  高精度的熱敏電阻溫度測量需要精密信號調(diào)理、模數(shù)轉(zhuǎn)換、線性化和補償,如圖2所示。盡管信號鏈看起來簡單明了,但其中涉及的幾個復(fù)雜因素也會影響整個系統(tǒng)的電路板尺寸、成本和性能。ADI精密ADC產(chǎn)品組合中有幾種集成解決方案,例如 AD7124-4/AD7124-8,它們能為溫度系統(tǒng)設(shè)計帶來多方面好處,應(yīng)用所需的大部分構(gòu)建模塊都已內(nèi)置。但是,設(shè)計和優(yōu)化基于熱敏電阻的溫度測量解決方案涉及到多種挑戰(zhàn)。

  

3.png 

2. 典型 NTC 熱敏電阻測量信號鏈模塊

 

  挑戰(zhàn)包括:

  ·市場上有各種各樣的熱敏電阻。

  ·如何為具體應(yīng)用選擇合適的熱敏電阻?

  ·RTD一樣,熱敏電阻是無源器件,自身不會產(chǎn)生電氣輸出。使用激勵電流或電壓來測量傳感器的電阻,即讓一個小電流經(jīng)過傳感器以產(chǎn)生電壓。

  §如何選擇電流/電壓?

  §熱敏電阻信號應(yīng)如何調(diào)理?

  §如何調(diào)整上述變量,以便在規(guī)格范圍內(nèi)使用轉(zhuǎn)換器或其他構(gòu)建模塊?

  §在一個系統(tǒng)中連接多個熱敏電阻:傳感器如何連接?不同傳感器之間是否能共享一些模塊?對系統(tǒng)整體性能有何影響?

  §熱敏電阻的一個主要問題是其非線性響應(yīng)和系統(tǒng)精度。

  §設(shè)計的預(yù)期誤差是多少?

  §使用哪些線性化和補償技術(shù)來實現(xiàn)目標性能?

§本文將討論所有這些挑戰(zhàn),并就如何解決這些問題和進一步簡化此類系統(tǒng)的設(shè)計過程提供建議。

 

 

  熱敏電阻選擇指南

  當今市場上有很多NTC熱敏電阻可供選擇,為具體應(yīng)用選擇特定的熱敏電阻可能相當具有挑戰(zhàn)性。請注意,熱敏電阻按其標稱值列出,即25°C時的標稱電阻。因此,10 kΩ熱敏電阻在25°C時的標稱電阻為10 kΩ。熱敏電阻的標稱或基本電阻值從幾歐姆到10 MΩ不等。標稱電阻較低(10 kΩ或更低)的熱敏電阻,支持的溫度范圍通常也較低,例如–50°C+70°C。標稱電阻較高的熱敏電阻,可支持最高300°C的溫度。

  熱敏電阻元件由金屬氧化物制成。熱敏電阻有珠狀、徑向和SMD等形式。珠狀熱敏電阻采用環(huán)氧樹脂涂層或玻璃封裝,以提供額外保護。環(huán)氧樹脂涂層珠狀熱敏電阻、徑向和SMD熱敏電阻適用于最高150°C的溫度。玻璃涂層珠狀熱敏電阻適用于高溫測量。所有類型熱敏電阻的涂層/封裝還能防止腐蝕。一些熱敏電阻還具有額外的外殼,以在惡劣環(huán)境中提供進一步的保護。與徑向/SMD熱敏電阻相比,珠狀熱敏電阻具有更快的響應(yīng)時間。然而,后者不如前者那么穩(wěn)健。因此,使用何種熱敏電阻取決于最終應(yīng)用和熱敏電阻所處的環(huán)境。熱敏電阻的長期穩(wěn)定性取決于制造材料及其封裝和結(jié)構(gòu)。例如,環(huán)氧樹脂涂層的NTC熱敏電阻每年可能變化0.2°C,而密封的熱敏電阻每年僅變化0.02°C。

  不同熱敏電阻有不同的精度。標準熱敏電阻的精度通常為0.5°C1.5°C。熱敏電阻的標稱電阻值和β(25°C50°C/85°C關(guān)系)有一個容差。請注意,熱敏電阻的β值取決于制造商。例如,不同制造商生產(chǎn)的10 kΩ NTC熱敏電阻會有不同的β值。對于較高精度的系統(tǒng),可以使用Omega? 44xxx系列等熱敏電阻。在0°C70°C的溫度范圍內(nèi),其精度為0.1°C0.2°C。因此,所測量的溫度范圍以及該溫度范圍內(nèi)所需的精度決定了一個熱敏電阻是否適合特定應(yīng)用。請注意,Omega 44xxx系列的精度越高,其成本也越高。

  因此,使用何種熱敏電阻取決于:

  ·被測溫度范圍

  ·精度要求

  ·使用熱敏電阻的環(huán)境

  ·長期穩(wěn)定性

  ·線性化:βSteinhart-Hart方程

  為了將電阻轉(zhuǎn)換為攝氏度,通常使用β值。知道兩個溫度點以及每個溫度點對應(yīng)的電阻,便可確定β值。

  

4.png 

  其中:

  RT1 = 溫度1時的電阻

  RT2 = 溫度2時的電阻

  T1 = 溫度1 (K)

  T2 = 溫度2 (K)

  熱敏電阻的數(shù)據(jù)手冊通常會列出兩種情況的β值:

  ·兩個溫度分別為25°C50°C

  ·兩個溫度分別為25°C85°C

  用戶使用接近設(shè)計所用溫度范圍的β值。大多數(shù)熱敏電阻數(shù)據(jù)手冊在列出β值的同時,還會列出25°C時的電阻容差和β值的容差。

  較高精度的熱敏電阻(Omega 44xxx系列)和較高精度的最終解決方案使用Steinhart-Hart方程將電阻轉(zhuǎn)換為攝氏度。公式2需要三個常數(shù)ABC,這些常數(shù)同樣由傳感器制造商提供。公式的系數(shù)是利用三個溫度點生成的,因此所得公式盡可能減少了線性化引入的誤差(線性化引起的誤差通常為0.02°C)

  

5.png 

  其中:

  A、B、C是從三個溫度測試點得出的常數(shù)。

  R = 熱敏電阻的阻值,單位為Ω

  T = 溫度,單位為K

  電流?電壓激勵

  圖3顯示了傳感器的電流激勵。將激勵電流作用于熱敏電阻,并將相同電流作用于精密電阻;精密電阻用作測量的參考。參考電阻的值必須大于或等于熱敏電阻的最高電阻值(取決于系統(tǒng)中測量的最低溫度)。選擇激勵電流的大小時,同樣要考慮熱敏電阻的最大電阻值,以確保傳感器和參考電阻兩端產(chǎn)生的電壓始終處于電子設(shè)備可接受的水平。激勵電流源需要一定的裕量或輸出順從性。如果熱敏電阻在所測量的最低溫度時具有較大電阻,則激勵電流值將非常低。因此,高溫下熱敏電阻兩端產(chǎn)生的電壓很小。為了優(yōu)化這些低電平信號的測量,可以使用可編程增益級。然而,增益需要動態(tài)編程,因為來自熱敏電阻的信號電平會隨溫度發(fā)生顯著變化。

  

6.png 

3. 熱敏電阻的電流激勵

  另一個方案是設(shè)置增益但使用動態(tài)激勵電流。當來自熱敏電阻的信號電平發(fā)生變化時,激勵電流值也會動態(tài)變化,使得熱敏電阻兩端產(chǎn)生的電壓處于電子設(shè)備的額定輸入范圍內(nèi)。用戶必須確保參考電阻兩端產(chǎn)生的電壓也處于電子設(shè)備可接受的水平。這兩種方案都需要高水平的控制,持續(xù)監(jiān)測熱敏電阻兩端的電壓,以確保信號能被電子設(shè)備測量。有沒有更簡單的方案?我們來看看電壓激勵。

  

7.png 

4. 熱敏電阻的電壓激勵

當熱敏電阻由恒定電壓激勵時,通過熱敏電阻的電流將隨著熱敏電阻阻值的變化而自動縮放?,F(xiàn)在使用精密檢測電阻,而不使用參考電阻,其目的是計算流過熱敏電阻的電流,這樣就能計算出熱敏電阻的阻值。由于激勵電壓也用作ADC基準電壓,因此無需增益級。處理器無需監(jiān)控熱敏電阻兩端的電壓,無需確定該信號電平能否被電子設(shè)備測量,也無需計算要將增益/激勵電流調(diào)整到什么值。這是本文中使用的方法。

 

  熱敏電阻阻值范圍?激勵

  如果熱敏電阻的標稱電阻和阻值范圍較小,那么電壓或電流激勵均可使用。在這種情況下,激勵電流和增益可以是固定值。電路將如圖3所示。這種方法很有用,因為流過傳感器和參考電阻的電流是可控的,這在低功耗應(yīng)用中很有價值。此外,熱敏電阻的自發(fā)熱也極小。

  對標稱電阻較低的熱敏電阻也可以使用電壓激勵。但是,用戶必須確保通過傳感器的電流對于傳感器本身或應(yīng)用而言任何時候都不能太大。

當使用標稱電阻和溫度范圍均較大的熱敏電阻時,電壓激勵會使系統(tǒng)更容易實現(xiàn)。較大標稱電阻確保標稱電流處于合理水平。但是,設(shè)計人員需要確保電流在應(yīng)用支持的整個溫度范圍內(nèi)處于可接受的水平。

 

  Σ-Δ ADC在基于熱敏電阻的應(yīng)用中的重要作用

  當設(shè)計熱敏電阻測量系統(tǒng)時,Σ-Δ ADC能提供多方面優(yōu)勢。首先,Σ-ΔADC能夠?qū)δM輸入過采樣,從而盡可能地減少外部濾波,只需要簡單的RC濾波器。另外,它們支持靈活地選擇濾波器類型和輸出數(shù)據(jù)速率。在采用市電供電的設(shè)計中,內(nèi)置數(shù)字濾波可用來抑制交流電源的干擾。AD7124-4/AD7124-824位器件的峰峰值分辨率21.7(最大值),因此它們能提供高分辨率。

  其他優(yōu)點包括:

  ·寬共模范圍的模擬輸入

  ·寬共模范圍的基準輸入

  ·能夠支持比率式配置

  ·有些Σ-ΔADC集成了很多功能,包括:

  ·PGA

  ·內(nèi)部基準電壓源

  ·基準電壓源/模擬輸入緩沖器

  ·校準功能

  ·使用Σ-Δ ADC可大幅簡化熱敏電阻設(shè)計,減少BOM,降低系統(tǒng)成本,縮小電路板空間,并縮短產(chǎn)品上市時間。

  本文將AD7124-4/AD7124-8用作ADC,它們是集成PGA、嵌入式基準電壓源、模擬輸入和基準電壓緩沖器的低噪聲、低電流精密ADC。

  熱敏電阻電路配置——比率式配置

  無論使用激勵電流還是激勵電壓,都建議使用比率式配置,其中基準電壓和傳感器電壓是從同一激勵源獲得。這意味著激勵源的任何變化都不會影響測量的精度。

  圖5顯示,恒定激勵電流為熱敏電阻和精密電阻RREF供電,RREF上產(chǎn)生的電壓就是熱敏電阻測量的基準電壓。激勵電流不需要非常準確,穩(wěn)定性不需要太高,因為在此配置中,激勵電流的任何誤差都會被抵消。激勵電流通常比電壓激勵更受歡迎,原因是它能出色地控制靈敏度,而且當傳感器位于遠程地點時,它具有更好的抗擾度。這種類型的偏置技術(shù)常用于電阻值較低的RTD或熱敏電阻。但是,對于電阻值較大且靈敏度較高的熱敏電阻,溫度變化所產(chǎn)生的信號電平會較大,因此應(yīng)使用電壓激勵。例如,一個10 kΩ熱敏電阻在25°C時的阻值為10 kΩ,而在?50°C時,NTC熱敏電阻的阻值為441.117 kΩ。AD7124-4/AD7124-8提供的50 μA最小激勵電流可產(chǎn)生的電壓為441.117 kΩ × 50 μA = 22 V,此電壓過高,超出了該應(yīng)用領(lǐng)域中使用的大多數(shù)ADC的工作范圍。熱敏電阻通常還連接到電子設(shè)備或位于電子設(shè)備附近,因此不需要激勵電流的抗噪優(yōu)勢。

  

8.png 

5. 恒流源配置

  圖6顯示了用于在NTC熱敏電阻兩端產(chǎn)生電壓的恒定激勵電壓。以分壓器電路的形式添加一個串聯(lián)檢測電阻,會限制熱敏電阻在最小電阻值時流經(jīng)其中的電流。在此配置中,在25°C的基本溫度時,檢測電阻RSENSE的值必須等于熱敏電阻的電阻值,以便將它處于25°C標稱溫度時的輸出電壓設(shè)置為基準電壓的中間值。同樣,如果使用25°C時阻值為10 kΩ10 kΩ熱敏電阻,則RSENSE必須等于10 kΩ。當溫度改變時,NTC熱敏電阻的阻值也會改變,熱敏電阻兩端的激勵電壓的一小部分也發(fā)生改變,從而產(chǎn)生與成NTC熱敏電阻阻值比例的輸出電壓。

  

9.png 

6. 分壓電路配置

  如果選擇用來為熱敏電阻和/RSENSE供電的基準電壓與用于測量的ADC基準電壓相同,則系統(tǒng)就是比率式測量配置(7),任何與激勵電壓源相關(guān)的誤差都會被消除。

  

10.png 

7. 熱敏電阻比率式配置測量

  請注意,檢測電阻(電壓激勵)或參考電阻(電流激勵)的初始容差和漂移必須很低,因為這兩個變量均會影響系統(tǒng)總體精度。

  當使用多個熱敏電阻時,可以使用單個激勵電壓。但是,每個熱敏電阻必須有自己的精密檢測電阻,如圖8所示。另一個方案是使用低導(dǎo)通電阻的外部多路復(fù)用器或開關(guān),從而支持共享單個精密檢測電阻。采用這種配置時,每個熱敏電阻在測量時都需要一定的建立時間。

  

11.png 

8. 多個熱敏電阻的模擬輸入配置測量

 

  總之,設(shè)計基于熱敏電阻的溫度系統(tǒng)時需要關(guān)注多個方面:傳感器選擇,傳感器連接,元器件選擇的權(quán)衡,ADC配置,以及這些不同變量如何影響系統(tǒng)整體精度。本系列的下一篇文章將解釋如何優(yōu)化系統(tǒng)設(shè)計和整體系統(tǒng)誤差預(yù)算以實現(xiàn)目標性能。

 

  • ADI亞德諾精密數(shù)模轉(zhuǎn)換器系列入門
  • 精密數(shù)模轉(zhuǎn)換器(DAC)是高性能信號處理系統(tǒng)的關(guān)鍵數(shù)據(jù)轉(zhuǎn)換組件,這些DAC被用于多個細分市場和應(yīng)用。例如,通信行業(yè)的無線與有線應(yīng)用,工業(yè)市場從80系統(tǒng)到大型工業(yè)控制器,醫(yī)療系統(tǒng)中的患者監(jiān)測或成像系統(tǒng)等。
    2023-10-31 538次
  • 無需更換/拆除設(shè)備,智能帶入邊緣IO-Link技術(shù)?
  • 傳感器信號傳輸存在數(shù)據(jù)隔離的瓶頸?手動改傳感器配置就可能導(dǎo)致產(chǎn)線停產(chǎn)?....這些傳統(tǒng)工業(yè)自動化的痛點在產(chǎn)業(yè)轉(zhuǎn)型不斷深化的今天來看異常顯著。為了克服此類挑戰(zhàn),IO-Link技術(shù)應(yīng)運而生,它的出現(xiàn)為傳感器和執(zhí)行器提供高速、雙向的數(shù)字數(shù)據(jù)通信,給工廠車間帶來優(yōu)秀的靈活性和可配置性,也將智能帶入了邊緣。
    2023-08-02 611次
  • 基于簡單降壓控制器精密雙極性電源
  • 用于生成電源的最常用拓撲結(jié)構(gòu)是降壓轉(zhuǎn)換器。但是,這種拓撲結(jié)構(gòu)僅限于從高于輸出的輸入電壓產(chǎn)生正輸出。當輸入電壓低于輸出電壓時,不能直接利用它來產(chǎn)生負電壓或提供穩(wěn)定的輸出。產(chǎn)生輸出的這兩個方面在汽車電子中均很重要,因為需要負電壓來為放大器供電,或者當輸入電壓軌顯著降低時,在冷起動的情況下整個系統(tǒng)必須連續(xù)正常工作。今天我們詳細介紹在SEPIC、Cuk和升壓轉(zhuǎn)換器中使用簡單降壓控制器的方法。
    2023-07-18 512次
  • 如何選擇基準電壓源
  • 基準電壓源只是一個電路或電路元件,只要電路需要,它就能提供已知電位。這可能是幾分鐘、幾小時或幾年。如果產(chǎn)品需要采集真實世界的相關(guān)信息,例如電池電壓或電流、功耗、信號大小或特性、故障識別等,那么必須將相關(guān)信號與一個標準進行比較。每個比較器、ADC、DAC或檢測電路必須有一個基準電壓源才能完成上述工作(圖1)。將目標信號與已知值進行比較,可以準確量化任何信號。
    2023-07-17 528次
  • 小尺寸高性能電源管理IC延長續(xù)航
  • 小尺寸高性能電源管理IC,長續(xù)航關(guān)鍵所在。以TWS耳機、可穿戴設(shè)備手表為例,消費類產(chǎn)品在保持輕巧造型設(shè)計的前提下,迫使電子電路需要在極小的尺寸以內(nèi),這也推動了包括電源管理IC在內(nèi)的半導(dǎo)體解決方案的集成化趨勢,功率器件的占板面積和封裝應(yīng)做到盡可能小,高轉(zhuǎn)換效率也是一個關(guān)鍵的設(shè)計要素。
    2023-07-04 491次

    萬聯(lián)芯微信公眾號

    元器件現(xiàn)貨+BOM配單+PCBA制造平臺
    關(guān)注公眾號,優(yōu)惠活動早知道!
    10s
    溫馨提示:
    訂單商品問題請移至我的售后服務(wù)提交售后申請,其他需投訴問題可移至我的投訴提交,我們將在第一時間給您答復(fù)
    返回頂部